453 research outputs found

    Trust economics feasibility study

    Get PDF
    We believe that enterprises and other organisations currently lack sophisticated methods and tools to determine if and how IT changes should be introduced in an organisation, such that objective, measurable goals are met. This is especially true when dealing with security-related IT decisions. We report on a feasibility study, Trust Economics, conducted to demonstrate that such methodology can be developed. Assuming a deep understanding of the IT involved, the main components of our trust economics approach are: (i) assess the economic or financial impact of IT security solutions; (ii) determine how humans interact with or respond to IT security solutions; (iii) based on above, use probabilistic and stochastic modelling tools to analyse the consequences of IT security decisions. In the feasibility study we apply the trust economics methodology to address how enterprises should protect themselves against accidental or malicious misuse of USB memory sticks, an acute problem in many industries

    HIV Serostatus and Tumor Differentiation Among Patients with Cervical Cancer at Bugando Medical Centre.

    Get PDF
    Evidence for the association between Human immunodeficiency virus infection and cervical cancer has been contrasting, with some studies reporting increased risk of cervical cancer among HIV positive women while others report no association. Similar evidence from Tanzania is scarce as HIV seroprevalence among cervical cancer patients has not been rigorously evaluated. The purpose of this study was to determine the association between HIV and tumor differentiation among patients with cervical cancer at Bugando Medical Centre and Teaching Hospital in Mwanza, North-Western Tanzania. This was a descriptive analytical study involving suspected cervical cancer patients seen at the gynaecology outpatient clinic and in the gynaecological ward from November 2010 to March 2011. A total of 91 suspected cervical cancer patients were seen during the study period and 74 patients were histologically confirmed with cervical cancer. The mean age of those confirmed of cervical cancer was 50.5 ± 12.5 years. Most patients (39 of the total 74-52.7%) were in early disease stages (stages IA-IIA). HIV infection was diagnosed in 22 (29.7%) patients. On average, HIV positive women with early cervical cancer disease had significantly more CD4+ cells than those with advanced disease (385.8 ± 170.4 95% CI 354.8-516.7 and 266.2 ± 87.5, 95% CI 213.3-319.0 respectively p = 0.042). In a binary logistic regression model, factors associated with HIV seropositivity were ever use of hormonal contraception (OR 5.79 95% CI 1.99-16.83 p = 0.001), aged over 50 years (OR 0.09 95% CI 0.02-0.36 p = 0.001), previous history of STI (OR 3.43 95% CI 1.10-10.80 p = 0.035) and multiple sexual partners OR 5.56 95% CI 1.18-26.25 p = 0.030). Of these factors, only ever use of hormonal contraception was associated with tumor cell differentiation (OR 0.16 95% CI 0.06-0.49 p = 0.001). HIV seropositivity was weakly associated with tumor cell differentiation in an unadjusted analysis (OR 0.21 95% CI 0.04-1.02 p = 0.053), but strong evidence for the association was found after adjusting for ever use of hormonal contraception with approximately six times more likelihood of HIV infection among women with poorly differentiated tumor cells compared to those with moderately and well differentiated cells (OR 5.62 95% CI 1.76-17.94 p = 0.004).\ud Results from this study setting suggest that HIV is common among cervical cancer patients and that HIV seropositivity may be associated with poor tumour differentiation. Larger studies in this and similar settings with high HIV prevalence and high burden of cervical cancer are required to document this relationship

    Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices

    Get PDF
    Objective The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. Study Design Feasibility study. Setting Tertiary referral center. Subjects and Methods Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). Results A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. Conclusion M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response

    Theory of current-driven motion of Skyrmions and spirals in helical magnets

    Full text link
    We study theoretically the dynamics of the spin textures, i.e., Skyrmion crystal (SkX) and spiral structure (SS), in two-dimensional helical magnets under external current. By numerically solving the Landau-Lifshitz-Gilbert equation, it is found that (i) the critical current density of the motion is much lower for SkX compared with SS in agreement with the recent experiment, (ii) there is no intrinsic pinning effect for SkX and the deformation of the internal structure of Skyrmion reduces the pinning effect dramatically, (iii) the Bragg intensity of SkX shows strong time-dependence as can be observed by neutron scattering experiment.Comment: 4 pages, 3 figure

    Absence of the common Insulin-like growth factor-1 19-repeat allele is associated with early age at breast cancer diagnosis in multiparous women

    Get PDF
    Multiparity decreases the risk of breast cancer in white women, whereas it is a risk factor in black women <50 years. Early-onset breast cancer (<50 years) has been associated with high insulin-like growth factor-1 (IGF-1) levels. Absence of the common IGF1 19 cytosine-adenine (CA)-repeat allele (IGF1-19/-19) inverts the effect of several non-genetic factors on breast cancer risk but the interaction between IGF1-19/-19 and multiparity on breast cancer risk is unknown. As IGF1-19/-19, multiparity and early-onset breast cancer are more common in black than in white women, we aimed to study whether multiparity combined with IGF1-19/-19 increases the risk of early-onset breast cancer. Four hundred and three breast cancer patients diagnosed in Lund, Sweden, at age 25–99 years were genotyped for the IGF1 CA-repeat length using fragment analysis. Overall, 12.9% carried the IGF1-19/-19 genotype. There was a highly significant interaction between multiparity and IGF1-19/-19 on age at breast cancer diagnosis (P=0.007). Among IGF1-19/-19 patients, multiparity was associated with a 9.2 year earlier age at diagnosis compared with uniparity or nulliparity (P=0.006). Multiparity combined with IGF1-19/-19 was associated with an early age at breast cancer diagnosis. If confirmed, IGF1-19/-19 may help identify a subgroup of women for earlier breast cancer screening

    The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review

    Get PDF
    BACKGROUND: Numerous studies were performed to illuminate mechanisms of tumorigenesis and metastases from gene expression profiles of Head and Neck Squamous Cell Carcinoma (HNSCC). The objective of this review is to conduct a network-based meta-analysis to identify the underlying biological signatures of the HNSCC transcriptome. METHODS AND FINDINGS: We included 63 HNSCC transcriptomic studies into three specific categories of comparisons: Pre, premalignant lesions v.s. normal; TvN, primary tumors v.s. normal; and Meta, metastatic or invasive v.s. primary tumors. Reported genes extracted from the literature were systematically analyzed. Participation of differential gene activities across three progressive stages deciphered the evolving nature of HNSCC. In total, 1442 genes were verified, i.e. reported at least twice, with ECM1, EMP1, CXCL10 and POSTN shown to be highly reported across all three stages. Knowledge-based networks of the HNSCC transcriptome were constructed, demonstrating integrin signaling and antigen presentation pathways as highly enriched. Notably, functional estimates derived from topological characteristics of integrin signaling networks identified such important genes as ITGA3 and ITGA5, which were supported by findings of invasiveness in vitro. Moreover, we computed genome-wide probabilities of reporting differential gene activities for the Pre, TvN, and Meta stages, respectively. Results highlighted chromosomal regions of 6p21, 19p13 and 19q13, where genomic alterations were shown to be correlated with the nodal status of HNSCC. CONCLUSIONS: By means of a systems-biology approach via network-based meta-analyses, we provided a deeper insight into the evolving nature of the HNSCC transcriptome. Enriched canonical signaling pathways, hot-spots of transcriptional profiles across the genome, as well as topologically significant genes derived from network analyses were highlighted for each of the three progressive stages, Pre, TvN, and Meta, respectively

    Small Magnetic Sensors for Space Applications

    Get PDF
    Small magnetic sensors are widely used integrated in vehicles, mobile phones, medical devices, etc for navigation, speed, position and angular sensing. These magnetic sensors are potential candidates for space sector applications in which mass, volume and power savings are important issues. This work covers the magnetic technologies available in the marketplace and the steps towards their implementation in space applications, the actual trend of miniaturization the front-end technologies, and the convergence of the mature and miniaturized magnetic sensor to the space sector through the small satellite concept

    FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    Get PDF
    Background: FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Methods: Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. Results: PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 7 10-4) and CT-CTV (p = 2.9 7 10-4). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 7 10-5) and CT-CTV (p = 6 7 10-5). Conclusions: FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

    Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs

    Get PDF
    We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier–Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems physiology, biophysical models are being increasingly used to characterize drug transport and distribution in human tissues where pharmacokinetic measurements are difficult or impossible to perform. Importantly, biophysical models can describe emergent properties of a system, i.e. properties not identifiable through the study of the system’s components taken in isolation
    corecore